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In this work, analysis and control of the chaotic oscillations in bounce 

dynamic of vehicle have been studied according to the comparison of 

controller based on the nonlinear control and chaos controller on the 

basis of the chaotic system properties. After modeling the vehicle 

dynamic, the chaotic behavior of the uncontrolled system was 

determined using combination of the numerical analysis including 

bifurcation diagrams and max Lyapunov exponent. The system 

parameters values were then identified in the quasi-periodic and chaotic 

behavior system. To eliminate the chaos, the control signal was first 

developed using a nonlinear fast-terminal sliding mode control algorithm 

that its control coefficients are online estimated by fuzzy logic which was 

designed for vehicle vertical dynamics. Then the delayed feedback 

control was designed on the basis of developed Pyragas scheme to 

control the system based on the properties of the chaotic vehicle system 

and generation of a small control signal. Comparison of the feedback 

system depicts priority of the Fuzzy-Pyragas controller in less energy 

consumption and better behavior. 

Keywords:  

Bifurcation diagram 

Lyapunov exponent 

Chaos control 

fast terminal sliding mode 

Pyragas algorithm   

Fuzzy logic 

 

1. Introduction   

 There are two chaos controller approaches 

to eliminate the chaotic oscillations. First, the 

chaotic dynamics is considered as a nonlinear 

system and common nonlinear controller is 

used for chaos nonlinear systems such as 

sliding mode controller (SMC) as a robust 

control in addition to ensure the stability of the 

closed loop system. Also SMC has proper 

performance in dealing with uncertainties in 

the system modeling. Another approach for 

controlling of chaotic systems is to use the 

properties of chaos in the control algorithm, 

including the Ott-Grebogi-Yorke (OGY) 

method based on Poincaré map, which was 

introduced in 1990. OGY can stabilize the 

unstable periodic orbits (UPOs) with a small 

control signal that orbits lead to the 

equilibrium point or stable cycle circuit. The 

main problem of the OGY method is the exact 

mathematical solution of the chaotic orbits. 

But, the Pyragas proposed a simple and 

efficient method based on Delayed Feedback 

Control (DFC) to stabilize the UPOs without 

their exact solutions. In the Pyragas controller, 
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a UPO is generally estimated by a time delay 

mode. In order to achieve a small control 

signal, ergodicity property of the chaotic 

systems is used to reduce energy consumption 

besides the better performance in less time [1-

4]. 

Due to the nonlinear nature of the vibrating 

elements of the suspension system such as 

springs and dampers, the vehicle vertical 

dynamics have a nonlinear structure. 

Therefore, it is possible to occur the quasi-

periodic and chaotic responses in the dynamics 

for some values of system parameters and the 

force applied to the vehicle wheels by the 

roughness of the road surface [5-6]. Recently, 

many studies have been conducted on the 

analysis of chaotic dynamics as well as the 

chaos control of vehicle vibrations. Zhou and 

Ishitobi [7] studied the analysis of bifurcation 

and chaos in a half-vehicle model. They 

studied the effect of damping coefficient on 

the vehicle nonlinear dynamic behavior and 

showed that chaotic behavior occurs in the 

modeled vehicle under the road surface force. 

Also, the vehicle chaos dynamics was 

analyzed and controlled with a semi-active 

suspension system by optimally discrete OGY 

chaos control [8]. For doing so, the phase 

portrait trajectories and Poincaré section tools 

are used and the results of OGY chaos control 

compared to nonlinear controllers depicted a 

decrease in settling time in the responses as 

well as the size of the control input signal and 

energy consumption [9]. 

In this work, after mathematical modeling, 

the chaos is studied via the bifurcation 

diagrams and Lyapunov exponent and the 

quasi-periodic and chaotic behavior system 

can be determined. Then, by presenting the 

fuzzy system for the fast-terminal SMC and 

the extended Pyragas, the control systems are 

designed to eliminate chaos in the bounce 

model. As a result, by development of fast 

terminal SMC while using exponential sliding 

surface, the trajectories of the feedback system 

can be fast stabilized. Also, in the Pyragas 

method, the SMC algorithm is integrated with 

this control method, which innovatively fuzzy 

inference is used to estimate the control gains 

of the sliding delay feedback system. 

Integration of fuzzy in the control strategies 

can eliminate the chatting that is created by the 

sliding of the trajectories around the sliding 

surface and leads to faster convergence. The 

simulation control results demonstrate the 

better performance of extended Pyragas 

control system compared to the fast terminal 

SMC in reducing the stabilization time and 

energy consumption of the system. 

2. Dynamical Modeling  

Figure 1 shows a dynamic model of half-

vehicle model, in which the vehicle is modeled 

as a sprung mass with two degrees of freedom 

including vertical displacement ( Xb
) and 

rotation about the transverse axis of the body 

(θ) along with the two non-suspended masses 

of the front and rear tires model.  

Suspension system is modeled as nonlinear 

spring and damper. Also, the actuators forces 

in front and rear active suspension are fu and 

ru respectively. The mathematical relation 

governing the force of nonlinear springs and 

dampers of the suspension system is expressed 

as follows [7] 

s ssgn( )=  
n

s sf k  (1) 

= Xsc s sf c  (2) 

Displacement of input excitation from the 

road surface is assumed as sinusoidal function, 

which is modeled as follows: 

sin( ) sin(2 )=  =fdX A t A ft  (3) 

sin( ) sin(2 )=  + = +rdX A t A ft    (4) 

, where A and f are the amplitude and 

frequency of the excitation force and  

represents the time delay related to the 

roughness of the road surface between the 

front and rear tires. 

 

Figure 1: Half vehicle model with active 

suspension under road surface roughness 
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Using Newton-Euler laws, dynamical 

equations of the vertical model in vehicle are 

obtained as follows. 

2
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3. Chaos Analysis 

Numerical simulations of the dynamical 

system based on the equations (5)-(8) have 

been done using the fourth-order Runge-Kutta 

method. The numerical values of the various 

parameters in the simulation are expressed 

according to Table 1. The values of these 

parameters, which change the qualitative 

nature of the system motion, are referred to as 

critical values in bifurcation diagrams. The 

distinction between periodic and chaotic 

behavior is made by studying the bifurcation 

shapes. 

 

Table 1: Numerical values of system parameters 

Values  System parameters  

1180 kg 

6336kgm2 

50kg  

45kg  

36952N/m 

30130 N/m 

140000N/m 

500kg/s 

360kg/s 

1.5 

1.25 

1.123m 

1.377m 

Mb 
J 

Mf 

Mr 

kf2 

kr2 

kf1 , kr1 

cf2u , cf2r 

cf2d , cfr2 

nr2 nf2 

nr1 , nf1 

lf 

lr 

Figure 2 demonstrates the bifurcation 

diagram of the state variables relative to the 

changes of the control parameter of the road 

surface excitation amplitude, which are plotted 

in the range 0 A 0.2m  . The results of Fig. 2 

depict that almost in 0.05 A 0.014  , there is 

an irregular dynamic behavior with the 

occurrence of chaos. By increasing the 

amplitude value after the mentioned range, the 

bifurcation diagram shows regular and 

periodic dynamic behavior. 

 

 

 

 
Figure 2: Bifurcation diagram of the displacement 

of system mode variables relative to the change of 

the control parameter of the road surface excitation 

amplitude 

In order to study chaos in the system 

quantitatively, the max Lyapunov exponent 

diagram is used. Due to the strong influence of 

nonlinear systems with respect to the initial 

conditions, with a slight change in the initial 

conditions, its effect on the system dynamic 

behavior is investigated and the distance 

between the trajectories and consequently the 

rate of change of their distance is obtained as 

Lyapunov exponent (LE). Thus, LE for the 

variable x(t) can be defined as follows [9]: 
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( )( )
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(9) 

, where, ( )( )E x   is the real part of 

eigenvalue related to Jacobi matrix the system. 

Chaotic systems have positive, negative and 

zero Lyapunov values, so that the positive LE 

indicates the divergence of the system's 

trajectories from the equilibrium point, its 

negative shows that the trajectories are 

approaching to the fixed points and the zero 

values of LE depicts the return of trajectories. 

In general, dissipated systems with stable and 

limited behavior have negative Lyapunov 

values. Figure (3) shows the Lyapunov 

exponent   for the variables of system has 

been plotted according to Equation (9). Figure 

(4) indicates max Lyapunov exponent 

corresponding to the variable 
bX . It is 

specified that if the nonlinear dynamics has at 

least one positive LE beside the negative value 

of the LE, as a result the system must have 

chaotic behavior and confirms the chaotic 

behavior in vehicle dynamics. In order to 

calculate the nonlinear system Lyapunov 

exponent, the Wolf algorithm was used [10]. 

 

Figure 3: Lyapunov diagrams of system mode 

variables 

 

Figure 4: Max Lyapunov exponents of the mode 

variable 
bx  

Also, the results of Figures (5) to (7) depict 

that in the bifurcation shapes (a) in a specified 

interval, there is an irregular dynamic behavior 

with chaos as a consequence, in the shapes of 

Lyapunov (b), Max Lyapunov exponent is 

positive and confirms the chaotic behavior. 

Between the above two limits, the bifurcation 

diagram in Figure (a) shows a regular and 

periodic dynamic behavior, which 

accordingly, it is a negative Lyapunov 

exponent in Figure (b). 

 
(a) 

 
(b) 

Figure 5: Max Lyapunov exponents (a) 

Bifurcation diagram in terms of phase angle control 

parameter, (b) Max Lyapunov exponent related to 

bifurcation diagram in terms of phase angle 

parameter 

 
(a) 

 
(b) 

Figure 6: Max Lyapunov exponents (a) 

Bifurcation diagram in terms of control parameter 

of road surface excitation amplitude, (b) Max 

Lyapunov exponent of bifurcation diagram in terms 

of excitation amplitude parameter 
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(a) 

 
(b) 

Figure 7: Max Lyapunov exponents (a) 

Bifurcation diagram according to the control 

parameter of the front suspension spring stiffness, 

(b) Max Lyapunov exponent related to the 

bifurcation diagram in terms of the front 

suspension spring stiffness 

4. Chaos Control 

In order to improve the control strategy 

including increasing stability, reducing settling 

time and eliminating chaos, at first, a nonlinear 

control algorithm is designed based on the 

development of SMC on the vehicle dynamic 

nonlinear system. Thus, a suitable control 

system can be obtained using the fast terminal 

sliding mode method and its positive features 

in addition to removing its important defect, 

which is chatting phenomenon [11-16]. 

4.1. Fast Terminal SMC 

A dynamic system with following nonlinear 

mathematical model is considered: 

( ) ( ) ( )= +
n

x f x b x u  (10) 

, where, 
( )1

, , ,
− = 

 
n

x x x x is the system 

mode vector and u is controlled input. 

In the fast-terminal SMC algorithm, in 

contrary to the sliding mode control scheme, 

the sliding surface is proposed as nonlinear 

exponentially and for this reason, it has a 

higher rate of convergence of system mode 

variables on the sliding surface. The sliding 

surface in the control of the fast terminal SMC 

is proposed as follows [13]. 

/
1 1 1 0= + + =q pS X X X   (11) 

The control input function is designed by 

considering the above sliding surface ( ) 

equal to zero by as: 

11 2

/1
0

1
1

( )

( ).

( ) ; 0

− −− −
+

− −
= +

−
−

= +
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 + = −
  
  
  

= − 
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n kn
k A Bu keq

qk pkn k
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u u u

a z

su b z

s
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(12) 

In order to design a fast terminal SMC, the 

following sliding surfaces are considered as a 

combination of vertical displacement and 

velocity error of the rigid body as follows: 

/
1

/
2

( ) ( ) ( )

( ) ( ) ( )

 = − + − + −


= − + − + −

d d d

d d d

q p
b b b b b b

q p
b b b b b b

x x x xS x x

S     
 (13) 

The sliding condition is expressed as

= −
dS

KS
dt

 and the control coefficient K should 

be selected so that ensures the sliding 

conditions in order to place the system 

movement path on the sliding surface [9]. The 

dynamical model of a vehicle based on 

equations (5)-(8) is rewritten as matrix by the 

following relation: 

+ + =Mx Cx Kx Du  (14) 

, where the vector of state varibles system 

including the vehicle dynamic variables along 

with the tire displacement of front and rear is 

defined as follows: 

      x       =
T

b f r fd rdx x x x x  (15) 

Also 

f

r6 6 6 6 6 6 6 2 2 1

uM 0 C 0 K 0 D
M= ,C ,K ,D ,u

u0 0 0 B 0 A 0
    

        
= = = =         

         

 

0=S
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Finally, by writing Equation (15) as 

Equation (10) in which 

f (x) M Cx M Kx− −= − −1 1
 and b(x) M D−= 1

are 

functions and by constituting it in Equation 

(12), the control input signal including the oil 

pressure applied to the front and rear hydraulic 

actuators is calculated as follows:  
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  (17) 

According to the block diagram in Figure 8, 

the fuzzy inference system is able to estimate 

the fast terminal sliding mode control 

coefficients online. These coefficients are 

related to the values in the sliding surface 

including p and q and the control gain k 

according to equations (13) and (17), which 

should also be true in the sliding condition

= −
dS

KS
dt

.

The general structure of fuzzy logic to 

estimate the best values for mentioned control 

coefficients is as follows. 

Rule ith (Ri): If the error (e) is equal to

and the derivative of the error (De) is equal
 

 then k will be equal to .  

Where,
 1F  , 2F and G are the membership 

type one functions for rule ith. Also,
 

1 2, , [ ; ; 0; ; ] − − + +F F G B S Z S B  and the symbols 

are big negative, small negative, zero, small 

positive and big positive respectively. The 

base table of error-based fuzzy logic in the 

first row of the horizontal column equal to the 

error (e) and in the first vertical column equal 

1F i

2F i iG

 

 
Figure 8: Fuzzy fast-terminal SMC block diagram of vehicle system 
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to the error derivative (De) for the fuzzy 

control inputs according to table 2 and 3. The 

selected fuzzy system is designed on the basis 

of Mamdani inference and the output of fuzzy 

is derived using the gravity center procedure. 

Table 2: Fuzzy logic rules for K 

De/e B- S- Z0 S+ B+ 

B- B- B- B- S- Z0 

S- B- B- S- Z0 PS 

Z0 B- NS Z0 S+ B+ 

S+ S- Z0 S+ B+ B+ 

B+ Z0 S+ B+ B+ B+ 

Table 3: Fuzzy logic rules for p, q 

De/e B- NS ZO PS B+ 

B- Z0 Z0 S+ S+ B+ 

S- Z0 Z0 PS B+ B+ 

Z0 Z0 S+ B+ B+ B+ 

S+ PS B+ B+ B+ B+ 

B+ B+ B+ B+ B+ B+ 

4.2. Extended Pyragas controller 

Control of chaos based on the properties of 

chaotic system brings the system responses to 

their desired value in addition to eliminating 

chaotic vibrations in less time with less 

energy. Therefore, the Pyragas based chaos 

control system is based on delay feedback for 

stabilization of alternating unstable orbits in 

which an UPO is estimated by mode variable 

with time delay without need for basic 

knowledge on the unstable orbit. In this 

control strategy, the feedback signal is based 

on the difference between linear mode and 

time delay, and the time delay constant is 

considered equal to the period of unstable 

orbits. Therefore, the control input signal is 

calculated simply as  u(t) k y(t ) y(t)= −  − , 

which is time delay and K is the control 

coefficient, which stability of periodic circuits 

is ensured by selecting its appropriate value [1, 

2].  

In order to improve the Pyragas control 

algorithm in fast stabilization, the system 

sliding mode nonlinear algorithm is used. In 

this way, if the system dynamics are defined as 

follows: 

(n)
1 2x f (t,x) f (t,x)u= +  (18) 

, where x is the state variables vector, u is 

the control signal, the f1 and f2 are the 

functions with uncertainties and for u = 0, the 

system depict chaotic behavior. In this case, 

we first define the delay mode variable

x(t) x(t T)= −  and it is obvious that the delay 

mode must satisfy Equation (18) as follows: 

(n)
1 2x f (t T,x) f (t T,x)u= − + −  (19) 

, where, u u(t T)= − . The system error 

dynamics with the difference of two equations 

(18) and (19) are obtained as follows: 

(n) (n)
1 1

2 2

x x f (t,x) f (t T,x)

f (t,x)u f (t T,x)u

− = − −

+ − −
 (20) 

Where e x x= −  the error vector and the 

system error differential equation are 

expressed as follows: 

(n)
1 1

2 2

e f (t,e x) f (t T,x)

f (t,e x)u f (t T,x)u

= + − −

+ + − −
 (21) 

Therefore, the stability of a periodic unstable 

circuit in a chaos system according to 

Equation (20) leads to the stabilization of the 

error dynamics (21) that for increasing the 

system convergence rate to the stable balanced 

point, sliding mode resistive control algorithm 

has been used according to the system 

uncertainty and the sliding surface is defined 

as 
n 1

i i

i 1

ˆS e
+

=

=   in which

t t
(i 1)

i i

T T

ê (t) e (s)ds e (s)ds−= =  and

i 0   to achieve a stable exponential 

dynamics to reach the system mode to the 

sliding mode, S 0=  must be constituted. In 

order to extract the control input u that the 

system trajectories cross the sliding surface 

intersection in a limited time, a definite 

positive function of Lyapunov is defined as
2V (1/ 2)S=  that is finally obtained by 

deriving from Lyapunov function and 

assuming 2f (t,x) 0  and simplifying the 
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calculations, the control input u is extracted as 

follows [3]. 

n n
n m

n

i i

i 1

1 ˆ ˆu .( f (t, x) f (t T,x)
g (t,x)

e Ksign(S))

=

= −  − −


+  +

 (22) 

Where the coefficient K should be true in 

the following inequality in order to satisfy the 

system Lyapunov stability condition: 

 

2M

2m

n

i i n 1 n 1

i 1

n n

2M

f (t, x)
K ( 1)

f (t, x)

e f (t, x) f (t T,x)

F(t, x) F(t T,x)

f (t T,x) u

=

 −

  +  − −

+ +  −

+ − + 


 

(23) 

 

Figure 9: Delayed feedback Fuzzy-sliding control block diagram system 
 

In order to concentrate a chaos controller on 

the chaotic dynamics, active suspension 

eliminate the chaotic vibrations along with 

improving system behavior in the shortest 

possible time and best energy consumption, a 

delay feedback controller modified by SMC 

algorithm is used to control the system 

appropriately according to the chaotic 

properties. Also, the structure of the control 

system has been improved by integrating the 

fuzzy logic system in the sliding delay 

feedback control algorithm by calculating the 

control gains online. In this way, the control 

coefficient, which was previously estimated by 

trial and error, is determined here using a 

fuzzy inference system accurately and 

according to each specific dynamic maneuver 

that improves the designed control system. 

According to the control block diagram in 

Figure 9, the pressure control system provides 

the required oil for active suspension hydraulic 

actuator, as a result the stabilizing forces on 

the vertical dynamics of the vehicle are 

applied to the chassis by these actuators. In the 

delayed feedback chaos control system 

developed with sliding mode, as the system 

dynamics reach sliding mode, the periodic 

unstable orbits are stabilized and the chaos is 

eliminated. In designing the mentioned control 

system, first, it is important to calculate the 

control coefficient K that its value must be 

true in Equation (22) and then eliminate the 

effect of sliding the system's trajectories 

around the sliding surface while generating 

control input due to sliding mode that prevents 

chattering phenomenon. For this purpose, 

fuzzy inference is used for online and accurate 

estimation of the control coefficient K, and 

finally, the delayed feedback fuzzy-sliding 

controller stabilizes the system alternating 

orbits. 

In order to estimate the best control 

coefficient of the sliding Pyragas system by 

fuzzy inference, with the help of fuzzy system 

inputs including error and its derivative 

according to the dynamics of the delayed 

feedback stabilization, the appropriate value K 

is calculated in the sliding mode system 
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according to the fuzzy rules mentioned in the 

previous control section.  

Figures (10-13) show the comparison of the 

behavior of both extended Pyragas and fast 

terminal fuzzy-sliding controllers with open 

loop system for system variables. 

 

Figure 10: Comparison of vertical displacement of 

vehicle body under fast-terminal fuzzy-sliding 

controller with extended Pyragas controller 

 

Figure 11: Comparison of angular displacement of 

the vehicle body under the fast terminal fuzzy-

sliding controller with the extended Pyragas 

controller 

 

Figure 12: Comparison of displacement of front 

wheel under fast terminal fuzzy-sliding controller 

with extended Pyragas controller 

 

Figure 13: Comparison of displacement of rear 

wheel under fast terminal fuzzy-sliding controller 

with extended Pyragas controller 

In order to consider the performance of the 

control system actuators, the equivalent 

damping force related to the active vehicle 

suspension system is analyzed as control input 

signals. A comparison of the dynamic 

behavior of the forces exerted by the active 

front and rear suspension on the vehicle 

chassis, including the force variables
sfFC  and

srFC under the controllers is shown in Figure 

14 that depict the vehicle stabilization after 

converging the control system in appropriate 

time. As it has been specified, with the 

application of the extended Pyragas controller, 

significant reduction is seen in amplitude of 

the control signals, while reducing 

consumption of energy and completely 

eliminates the problem of saturation in the 

suspension operators. Also, the settling time is 

less than the fast terminal fuzzy-sliding 

controller that leads to faster stabilization of 

the system.  

 
(a) 

 
(b) 

Figure 14: Comparison of damping force 

equivalent to active suspension under the 

application of fast-terminal sliding fuzzy 

controllers and extended Pyragas, (a) active front 

suspension, (b) active rear suspension 

5. Conclusion  

The chaotic dynamics of the vehicle model 

is numerically investigated and control of 

chaos is designed for the system in this paper. 

Dynamical model is derived via the Newton-

Euler relations and simulated by the fourth-
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order Runge-Kutta. Bifurcation diagrams and 

max Lyapunov exponent are used to confirm 

occurrence of chaos in the system. Then, by 

presenting a new fuzzy fast-terminal SMC 

method, chaotic irregular vibrations are 

eliminated and the dynamical system can be 

stabilized. In order to control the system and 

eliminate the chaotic vibrations, control of 

chaos is used based on the delayed feedback 

developed by the SMC algorithm in the active 

suspension system. The comparison of the 

results of this article with the reference [9] 

showed reduction of settling time in the 

responses by 10% along with the elimination 

of major overshoots in the dynamic system 

responses. Also, the comparison of the control 

signals of this paper with the reference [9] 

indicated a significant reduction in overshoot 

in the control input responses while reducing 

consumption of energy, eliminates the 

saturation problem in the suspension actuators. 

6. Notion 

Xb Vertical displacement of main body Mb, 

(m) 

θ Displacement of body angles Mb, (rad) 

Xf Displacement of the front tire Mf, (m) 

Xr Displacement of rear tire Mr, (m) 

Xfd Induction displacement to the front tire 

Xrd Induction displacement to rear tire 

Cf1 damping coefficient of Front tire, kg/s 

Cr1 damping coefficient of Rear tire, kg/s 

Cf2 damping coefficient of Front suspension, 

kg/s 

Cr2 damping coefficient of Rear suspension, 

kg/s 

Mb Vehicle body mass 

J Moment of inertia of the vehicle body 

M   Rubber mass 

n1, n2    Nonlinear coefficient of suspension and 

tire springs 

L Distance of the vehicle mass center to the 

suspension system 

f Frequency of excitation force, Hz 

α Delay in displacement applied from road 

roughness to front and rear tires 

λ   Lyapanov exponent 

f Front suspension 

r Rear suspension 

References: 

[1] K. Pyragas, "Continuous Control of Chaos 

by Self- Controlling Feedback." Physics letters 

A, Vol. 170, pp. 421-428, (1992). 

[2] K. Pyragas, and E.A. Tamas,  

"Experimental Control of Chaos by Delayed 

Self-Controlling Feedback", Phys. Lett. A, 

Vol. 180, pp. 99–102 (1993). 

[3] H. Salarieh and A. Alasty, "Chaos Control 

in Uncertain Dynamical Systems Using 

Nonlinear Delayed Feedback" Chaos, Solitons 

& Fractals, Vol. 41, pp. 67-71, (2009). 

[4] F. Pashaei and M. Abtahi, "Chaotic 

Analysis and Chaos Control of a Lateral 

Dynamics Vehicle Based on the Nonlinear 

Poincare Map with Fuzzy Controller" 

Automotive Science and Engineering, Vol. 11, 

No.4, (2021) , 3693-3700. 

[5] B. Sepehri, A. Hemati, "Active Suspension 

Vibration Control Using Linear H-Infinity and 

Optimal Control" Automotive Science and 

Engineering,Vol.4,Issue3 (9-2014). 

[6] M. Salehpour, A. Bagheri, "Pareto 

optimization of a nonlinear vehicle model 

using multi-objective differential evolution 

algorithm with fuzzy inference-based adaptive 

mutation factor(MODE-FM)" Automotive 

Science and Engineering, Vol. 11, No.3, 

(2021) , 3594-3613. 

[7] Q. Zhu, M. Ishitobi, Chaos and 

bifurcations in a nonlinear vehicle model, 

Journal of Sound and Vibration, 275(3-5) 

(2004) 1136-1146. 

[8] S.M. Abtahi, "Chaotic Study and Chaos 

Control in a Half-Vehicle Model with Semi-

Active Suspension Using Discrete Optimal 

Ott–Grebogi–Yorke Method", Journal of 

Multi-body Dynamics, Vol. 231, pp. 148–155 

(2017). 

[9] S.M. Abtahi, 2019. Suppression of chaotic 

vibrations in suspension system of vehicle 

dynamics using chattering-free optimal sliding 

mode control, Journal of the Brazilian Society 

of Mechanical Sciences and Engineering, 

41(5) 210. 

[10] A. Wolf, J. B. Swift, H. L. Swinney, J. A. 

Vastano, 1985. Determining lyapunov 

exponents from a time series, Physica D, Vol 

16, pp. 285-317.  

                            10 / 11

http://dx.doi.org/10.22068/ase.2022.609
http://ase.iust.ac.ir/article-1-609-en.html


                                                                                                                                                    Y. Nourollahi et al. 

                                                             Automotive Science and Engineering (ASE)     3837 

[11] S. Laghrouche, F. Plestan, A. Glumineau, 

Higher order sliding mode control based on 

integral sliding mode, Automatica, 43(3) 

(2007) 531-537. 

[12] H. Li, X. Liao, C. Li, C. Li, Chaos control 

and synchronization via a novel chatter free 

sliding mode control strategy, 

Neurocomputing, 74(17) (2011) 3212-3222. 

[13] H.Wang, Z.-Z. Han, Q.-Y. Xie, W. 

Zhang, Finite-time chaos control via 

nonsingular terminal sliding mode control, 

Communications in Nonlinear Science and 

Numerical Simulation, 14(6) (2009) 2728-

2733. 

[14] S. Dadras, H. R. Momeni, V.J. Majd, 

Sliding mode control for uncertain new 

chaotic dynamical system, Chaos, Solitons & 

Fractals, 41(4) (2009) 1857-1862. 

[15] M. R. Faieghi, H. Delavari, D. Baleanu, 

Control of an uncertain fractional-order Liu 

system via fuzzy fractional-order sliding mode 

control, Journal of Vibration and Control, 

18(9) (2012) 1366-1374. 

[16] Y. Hong, G. Yang, D. Cheng, S. 

Spurgeon, A new approach to terminal sliding 

mode control design, Asian Journal of Control, 

7(2) (2005) 177-181. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Powered by TCPDF (www.tcpdf.org)

                            11 / 11

http://dx.doi.org/10.22068/ase.2022.609
http://ase.iust.ac.ir/article-1-609-en.html
http://www.tcpdf.org

